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1965 - "Moore's Law" [
Silicon Engine to drive ICT

Gordon E. Moore
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“More-than-Moore”(MtM) White Paper

They are trying to change the game.
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FOMs, Roadmaps, Trends for PE

Efficiency

Cost , Reliability, Loss etc. in
addition to power density

» Power Electronics Converters
Performance Trends
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Negawatt Cost ?




“Negawatt cost”

Power generation cost comparison with Negawatt co.

S
[l

Key factor for energy saving by Power Elec.

~
o

w  w
o un
1

Efficiency Prevalence
Improvement (Cost reduction)

N
(%3]

=N
O I ]
1 1

=
o
L

(%]
1

o

Cost of generation ( US cent per watt)

Negawatt cost definition . . . . .
as |ndeX for Wlde use Of PE H.E. Air PV(5MW) Wind Wind Coal

con. Farm Farm steam
100kW 100MW
technolo (100kW) - (roomw)

Fig.16 Purchase prices of Japanese air conditioner

Negawatt cost = 1400 2.8kW air conditioners

31200 1 N
oy @ . 8 1000 1 ectrici %%
Initial cost + Total maintenance cost £ 00 |consumption 1w ; ©%Vig2
———————————————————————————————————————————————— § 600 - . "':x st

o . '§ 400 4 .- 2 P
Saved power X Total operating time ) A6t
20 30 40 50 6.0
EER

Payback time of power electronics equipment
sufficiently competes with another renewable energy



Power electronics and micro electronics
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100 years of power device development
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William E. Newell, 1973 PESC Keynote

Power Electronics—Emerging from Limbo

WILLIAM E. NEWELL, SENIOR MEMBER,, 1EEE

Abstract—Power electronics is a technology which is interstitial to all
three of the major disciplines of electrical engineering: electronics,
power, and control. Yet its rapidly expanding significance has not been
widely recognized, and the historical parochialism of specialists within
the technology has stifled communication and cooperation in solving
increasingly challenging problems. This paper calls for an end to this
parochialism, leading to the emergence of an important new discipline
and profession.

 ‘ELECTRONKCS
DATA

I. PoweRr ELECTRONICS IS A TECHNOLOGY WHICH CONTROL

Now ExXisTs IN A FRAGMENTED LIMBO

HE BROAD field of electrical engineering is generally seg-
mented into three major areas: electronics, power, and . o - ) '
control. When someone uses the word electronics, it is quite Fig. 1. Power electronics: interstitial to all major d

o . . engineering.
likely that what he really means is signal-processing electronics.
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Power Electronics—Emerging from Limbo

WILLIAM E. NEWELL, SENIOR MEMBER, 1EEE

POWER ELECTRONICS WILL IN FACT EMERGE AS A FULL-
FLEDGED DISCIPLINE AND PROFESSION OF THE FUTURE

1) Solid-state power control systems will
continue to become increasingly prevalent,
supplanting electromechanical equipment,
and opening new applications never before
feasible. Fewer and fewer new applications
can be satisfied by the efficiency, the
degree of control, the reliability, or the
response speed obtainable from anything
but a solid-state switch.




Power Electronics—Emerging from Limbo

WILLIAM E. NEWELL, SENIOR MEMBER, 1EEE

2) Computer-oriented circuit analytical and
device modeling techniques will be
developed and will displace present
design techniques, making possible
greater optimization, increased reliability,
and reduced cost in both standardized and
custom equipment.

Eventually the insight gained will lead to
new unified theoretical approaches suited
to the analog versus digital, time versus
frequency, device versus circuit, steady-
state versus dynamic dilemmas which
constrain present approaches. In other
words, power electronics will have become

a discipline.

. Collector, (at 70,:m)
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Power Electronics—Emerging from Limbo

WILLIAM E. NEWELL, SENIOR MEMBER,, 1EEE

3) As the dollar volume of the high-power
solid-state device market grows, greater
research and development in this area will be
justifiable. A thorough understanding of charge
dynamics and thermal flow will lead to hew
and improved power device technology,
analogous to the rapid evolution which is
characteristic of small-signal device
technology. Turn-off devices will become
commonplace, and conventional devices will
be manufactured with smaller spreads in key
parameters to permit easier cascading in
series/parallel arrays.

Figure 1: 10kV IGCT module using the HPT
IGCT technology



Power Electronics—Emerging from Limbo

WILLIAM E. NEWELL, SENIOR MEMBER,, 1EEE

4) Standardized, general-purpose switching
modules will become avalilable to serve a greater
variety of functions. Increased production runs
and the elimination of custom design of many
iIndividual units will permit cost reductions without
sacrificing reliability. Most low-level control
circuits will be assembled from standard types of
Integrated or hybrid circuits.

5) University education |
6) Professional society, conference '

©



Types of power semiconductors(Switch)
Power MOSFET
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1988-Proc. of the IEEE

Power semiconductor Devices: An Overview

Phil Hower, Proc. of the IEEE, Vol. 76, No. 4, 1988
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Types of Power Semiconductors
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Silicon Power Devices
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Low Voltage MOSFET (Vertical)

Fig from Lecture Slide by
W. Saito, Toshiba
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Super Junction MOSFET

Fig from Lecture Slide by
W. Saito, Toshiba
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Insulated Gate Bipolar Transistor
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Summary of IGBT Technology

*Trench Gate for Low Vce(sat)

..........
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storing for higher carrier density '
—Reduction of channel resistance etc.
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Lifetime — * et
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Examples of High Power IGBT Package

Shen+Omura, Proc. of the IEEE, 2007
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High compatibility to CMOS for high
performance and new functions

Power IC Vsk in ISPSD papers
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Higher power range to cover volume zone
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High switching frequency for new applications

R Future HV Power IC will be ...
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Figure 7. Operating waveform of the demonstraied 13,56 MHz
resonant inverter circuit,
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Wafer technology

CZ / MCZ methods
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Silicon wafer trend
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Silicon wafer technology
____Productivity

[>300mm CZ, MCZ Large Market, Short time to market
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Simulation Technology advancement
mz‘;nd new device R&D
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Simulation technology

H Ohashi, | Omura - IEEE transactions on electron devices, 2013
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Advanced power devices Road map

Wide band—gap semiconductor Dia .
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H. Ohashi et al. “Role of Simulation Technology for the Progress in Power Devices and Their Applications,” IEEE
T-ED, Vol. 60, issue 2, 2013.

Hybrid pair platform of Si—switching
device and SiC diode (2013~2035)
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Future possibility

1) Si-power devices still have much room for development toward ultimate
MOSFETs and IGBTs.

2) The combination of Si-switching devices and SiC freewheeling diodes will
be a significant step not only for strengthening the SiC market but also for Si-
device development.

3) Si-IGBT will be replaced by SiC MOSFET in the voltage range of more than
1000 V in some applications, and SiC-IGBT has the potential to be used for
applications of more than 10 kV. (Si-IGBT for volume market, SiC for high end
market)

4) GaN power devices will replace some of Si-power ICs and will be used for
faster switching applications.

5) The unique properties of diamond have potential for new power devices
particularly in high-voltage applications.

6) The ultimate CMOS has the potential to be used for power integrated
devices in ICT applications.

H Ohashi, | Omura - IEEE transactions on electron devices, 2013
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